Protocol validation

in OVS + OVN test suites




Brief

Define the topic.
Why it's important.

Some useful tools.

lhar Hrachyshka



Protocol validation

as in
"hopefully, behavior reflects RFC"



How we test a new
feature?



How we test a new
feature?

® We can create object Xin NB...



How we test a new
feature?

® We can create object Xin NB...
e that is translated into object Y in SB...



How we test a new
feature?

® We can create object Xin NB...
e thatis translated into object Y in SB...
e thatis translated into OpenFlow flows...

lhar Hrachyshka



How we test a new
feature?

we can create object Xin NB...

that is translated into object Y in SB...
that is translated into OpenFlow flows...
We often stop here.

lhar Hrachyshka



Deeper?

We can check the path with ovn-trace or ovs—
ofctl ofproto/trace.

But it reflects intent, not reality. The packet is not
injected.

And how to validate a reply to injected packet?

lhar Hrachyshka



Why would we care?



Why would we care?

e End-to-end proof it actually works



Why would we care?

e End-to-end proof it actually works
e These bugs are hard to debug in field

lhar Hrachyshka



Why would we care?

e End-to-end proof it actually works
e These bugs are hard to debug in field
m pcaps

lhar Hrachyshka



Why would we care?

e End-to-end proof it actually works

e These bugs are hard to debug in field
= pCaps
= wireshark

lhar Hrachyshka



Why would we care?

e End-to-end proof it actually works

e These bugs are hard to debug in field
= pCaps
= wireshark
= animal bones

lhar Hrachyshka



Why would we care?

e End-to-end proof it actually works
e These bugs are hard to debug in field
= pCaps
= wireshark
= animal bones
= voodoo dolls

lhar Hrachyshka



Why would we care?

e End-to-end proof it actually works
e These bugs are hard to debug in field
= pCaps
= wireshark
= animal bones
= voodoo dolls
e Technically correct is the best kind of correct

lhar Hrachyshka



What do we want?




What do we want?

* prepare a packet




What do we want?

e prepare a packet
e inject it into dataplane

lhar Hrachyshka



What do we want?

e prepare a packet
e inject it into dataplane
e receive it on the other end

lhar Hrachyshka



What do we want?

e prepare a packet

e inject it into dataplane

e receive it on the other end
= also a peer reply?

lhar Hrachyshka



What do we want?

* prepare a packet
e inject it into dataplane
e receive it on the other end
= also a peer reply?
e confirm observed matches expected

Ihar Hrachyshka



ovs: hetdev-dummy/receive

AT CHECK([ovs-appctl netdev-dummy/receive port ${packet}])

lhar Hrachyshka



${packet}

local packet="...08004500002800004000££0600000001000100000..."

AT CHECK([ovs-appctl netdev-dummy/receive port ${packet}])

lhar Hrachyshka




ovn-controller: inject-pkt

packet="'inport=="S$inport" &&
eth.src==8a:bf:7e:2f:05:84 &&
.dst==0a:8£:39:4f:e0:73 &&
&§& ip.ttl==64 &&
.src==192.168.123.2 &&
ip4.dst==192.168.123.1 &&
udp && udp.src==53 && udp.dst==4369'

OVS WAIT UNTIL([as hv ovs-appctl -t ovn-controller \
inject-pkt "S$packet"])

Ihar Hrachyshka



inject-pkt - caveats

e ovn—controller only
e one packet per main loop iteration
e |[imited to OVN logical flow syntax

lhar Hrachyshka



ovs: ovs-ofctl
compose-packet

flow="\
eth src=8a:bf:7e:2f:05:84,\
eth dst=0a:8£:39:4f:e0:73,\
dl type=0x0800,\
nw src=192.168.123.2,\

nw dst=192.168.123.1,\
nw_proto=6,nw ttl=64,nw frag=no, \
tp src=54392,tp dst=5201,tcp flags=ack"

packet="ovs-ofctl compose-packet --bare "S$S{flow}""

lhar Hrachyshka



ovs: options:tx_pcap-=

AT CHECK([ovs-vsctl set Interface port2 options:tx pcap=out.pcap]

inject packet
packet="..."

AT CHECK([ovs-appctl netdev-dummy/receive portl ${packet}])

confirm received
AT CHECK([ovs-pcap out.pcap > out.pcap.txt 2>&l])
AT CHECK UNQUOTED([tail -n 1 out.pcap.txt], [0], [$S{packet}

)

lhar Hrachyshka



compose-packet: NAT

pre—-NAT
flow="...
packet="ovs-ofctl compose-packet --bare "S${flow}""

post-NAT
expected flow="echo "${flow}" | sed 's/192.168.1.1/8.8.8.1/g'"

expected="ovs-ofctl compose-packet --bare "${expected flow}""
AT CHECK([ovs-appctl netdev-dummy/receive portl ${packet}])

AT CHECK([ovs-pcap port2.pcap > port2.pcap.txt 2>&1])
AT CHECK UNQUOTED([tail -n 1 port2.pcap.txt], [0], [$S{expected}

)

lhar Hrachyshka



compose-packet: bad
checksum

flow="..."

packet="ovs-ofctl compose-packet --bare --bad-csum "S${flow}""

Ihar Hrachyshka



fmt_pkt



fmt_pkt

e when compose—-packet is not enough (L4+)

lhar Hrachyshka



fmt_pkt

e when compose—-packet is not enough (L4+)
e available as part of ovh—macros.at

Ihar Hrachyshka



fmt_pkt

e when compose—-packet is not enough (L4+)
e available as part of ovh—macros.at
e pbased on scapy

Ihar Hrachyshka



fmt_pkt: DHCPv6 example

local packet="Ether(dst='ff:ff:ff:ff:ff:ff', src='${src mac}')/
IPv6(dst="££f02::1:2"', src='S${src 1lla}')/
UDP (sport=546, dport=547)/
DHCP6 (msgtype=${msg code}, trid=0x010203)/
DHCP60ptClientId(
duid=DUID LL(lladdr='${src mac}'))"

as hvl ovs-appctl netdev-dummy/receive port ~fmt pkt S$packet”

Ihar Hrachyshka



Docs at https://scapy.readthedocs.1o0...

...or just play in REPL

S python3
>>> scapy.all import *

>>> [x X dir() "ARP" X]
['ARP', 'ARPHDR ETHER', 'ARPHDR LOOPBACK',

>>> help(ARP)

class ARP(scapy.packet.Packet)
| ARP( _pkt, /, *, hwtype=1l, ptype=2048, hwlen=None, plen=None,
op=1, hwsrc=None, psrc=None, hwdst=None, pdst=None)

Ihar Hrachyshka



fmt_pkt v0.0.1

fmt pkt() {
echo "from scapy.all import *; \
import binascii; \

out = binascii.hexlify(raw($1)); \
print(out.decode())" | $PYTHON3

lhar Hrachyshka



fmt_pkt v0.0.2

fmt pkt() {
ctlfile=$ovs base/scapy.ctl
if ! -e Sctlfile ; then
start scapy server
fi
ovs-appctl -t S$Sctlfile \
payload "S$1"
}

start scapy server() {
ctlfile=$Sovs base/scapy.ctl

"Stop srcdir"/tests/scapy-server.py \
——-unixctl=Sctlfile \

--log-file=$ovs base/scapy.log

on exit " && ovs-appctl -t Sctlfile exit”

Ihar Hrachyshka



fmt_pkt gotchas



fmt_pkt gotchas

e max 10 requests for python unixctl AF_UNIX
servers

Ihar Hrachyshka



fmt_pkt gotchas

e max 10 requests for python unixctl AF_UNIX
servers
= don't run in background - & (yet)

Ihar Hrachyshka



fmt_pkt gotchas

e max 10 requests for python unixctl AF_UNIX

servers
= don't run in background - & (yet)
e scapy is powerful, but not almighty

Ihar Hrachyshka



fmt_pkt gotchas

e max 10 requests for python unixctl AF_UNIX
servers
= don't run in background - & (yet)
e scapy is powerful, but not almighty
= but raw() accepts any python code, e.g.
socket.1in6_getnsma

Ihar Hrachyshka



fmt_pkt gotchas

e max 10 requests for python unixctl AF_UNIX
servers
= don't run in background - & (yet)
e scapy is powerful, but not almighty
= but raw() accepts any python code, e.g.
socket.1in6_getnsma
e still slower than ovs—ofctl compose-
packet

Ihar Hrachyshka



compose-packet or fmt_pkt?

L3? compose—packet

L4+? fmt_pkt (maybe)

Ihar Hrachyshka



feedback and questions
welcome

Ihar Hrachyshka



lhar Hrachyshka



