
OVN Testing and CI - an update

Dumitru Ceara, 2023

2

Agenda

● Overview of current OVN contributions

● In-tree “unit” and system tests

● End-to-end tests with ovn-kubernetes

● Control plane scale tests with ovn-heater

● Control plane scale tests with real CMS

● Data plane performance regression testing

● OVN CI: what, where, when?

● How do we improve all this?

3

Current OVN contributions

● OVN is still a very active project!

~30 features/user visible changes contributed in the last 12 months:

$ last_year=$(git log --format=format:"%H" origin/main --since=11/26/2022 | tail -1)

$ git diff $last_year..origin/main -- NEWS | grep '^+ -' -c

30

568 patches contributed in the last 12 months:

$ git log --oneline origin/main --since=11/26/2022 --until=11/26/2023 | wc -l

568

● For each patch developers, reviewers, maintainers must ensure:

○ it does what it’s supposed to (review/manual testing/etc)

○ the code quality is acceptable (review)

○ it doesn’t break existing functionality (CI)

○ it doesn’t introduce control plane scalability regressions (CI)

○ it doesn’t introduce data plane performance regressions (CI)

● Most patch series have more than one revision!

4

In-tree “unit” tests

$ make check TESTSUITEFLAGS="-l"
[...]
 806: ovn-ic.at:386 ovn-ic -- route sync -- ovn-northd -- parallelization=yes -- ovn_monitor_all=yes
 807: ovn-ic.at:386 ovn-ic -- route sync -- ovn-northd -- parallelization=yes -- ovn_monitor_all=no
[...]

In total 834 tests split in:

● actual unit tests (hint: they use ovstest ... to run unit tests): ovn-features.at, ovn-ipam.at, ovn-lflow-cache.at, ovn-vif-plug.at, etc.

● system tests “in disguise” (hint: ovn.at):

○ often test complex scenarios (multiple simulated hypervisors, complicated logical topologies)

○ run in OVN sandboxes

○ use the OVS “dummy” datapath with the userspace conntrack implementation

○ workloads are simulated with dummy interfaces

○ some of these are run multiple times, varying arguments like:

■ ovn-monitor-all (yes/no)

■ parallelization (yes/no)*

* Most tests are run with parallelization=yes, the only exceptions are in ovn-northd.at.

https://github.com/ovn-org/ovn/commit/937a9b59e262f5d4bf03ad475e217126d7a9bb8d

5

In-tree system tests

In total 167 tests:

● they bring up a real single node OVS and OVN environment

● 3 flavors of datapath:

○ kernel (netlink datapath)

○ netdev (userspace datapath)

○ dpdk (userspace datapath)

● workloads are actual veths running in network namespaces

● some of these are run multiple times, varying arguments like:

○ ovn-monitor-all (yes/no)

$ make check-kernel TESTSUITEFLAGS="-l"
[...]
 147: system-ovn.at:11226 ovn mirroring -- ovn-northd -- parallelization=yes -- ovn_monitor_all=yes
 148: system-ovn.at:11226 ovn mirroring -- ovn-northd -- parallelization=yes -- ovn_monitor_all=no
[...]

6

In-tree multi-node system tests

Just one set of tests for now:

● they bring up an OVN cluster running in containers (ovn-org/ovn-fake-multinode)

● configure a logical network topology and run traffic across different components of the network

● what is ovn-fake-multinode?

○ originally created by Numan Siddique to deploy “plain” OVN clusters with individual “fake” chassis running as containers

○ inspired from kind (kubernetes in docker)

○ each controller/compute node runs in its own container

○ each container looks like a “real” OVN chassis:

■ runs OVS

■ runs ovn-controller

■ central containers run NB/ovn-northd/SB

● Allows us to run upgrade-like tests (ovn-controllers running newer OVN versions, ovn-northd running older versions)

$ make check-multinode TESTSUITEFLAGS="-l"
[...]
 1: multinode.at:3 ovn multinode basic test
[...]

https://github.com/ovn-org/ovn/actions/runs/6992106882
https://github.com/ovn-org/ovn-fake-multinode
https://github.com/kubernetes-sigs/kind

7

End-to-end tests with ovn-kubernetes

ovn-kubernetes is the community’s own kubernetes CNI plugin: https://github.com/ovn-org/ovn-kubernetes

● Be nice people: try to ensure we don’t break ovn-kubernetes with OVN changes.

● Essentially, run a subset of ovn-kubernetes’ own tests on any OVN version (tree):

○ Build a custom ovn-kubernetes container image (with OVS/OVN compiled and patched from scratch).

○ Bring up a kubernetes cluster running in containers (kind) with ovn-kubernetes as CNI.

○ Run a (subset of) upstream kubernetes conformance tests:

 - {"target": "shard-conformance", "ha": "HA", "gateway-mode": "local", "ipfamily": "ipv6", "disable-snat-multiple-gws": "snatGW"}

- {"target": "shard-conformance", "ha": "HA", "gateway-mode": "local", "ipfamily": "dualstack", "disable-snat-multiple-gws":
"snatGW"}

- {"target": "shard-conformance", "ha": "HA", "gateway-mode": "shared", "ipfamily": "ipv4", "disable-snat-multiple-gws": "snatGW"}

- {"target": "shard-conformance", "ha": "HA", "gateway-mode": "shared", "ipfamily": "ipv6", "disable-snat-multiple-gws": "snatGW"}

○ Run a (subset of) upstream ovn-kubernetes control plane tests:

- {"target": "control-plane", "ha": "HA", "gateway-mode": "shared", "ipfamily": "ipv4", "disable-snat-multiple-gws": "noSnatGW"}

- {"target": "control-plane", "ha": "HA", "gateway-mode": "shared", "ipfamily": "ipv4", "disable-snat-multiple-gws": "snatGW"}

https://github.com/ovn-org/ovn-kubernetes
https://github.com/ovn-org/ovn/blob/f3a14907fe2b1ecdcfddfbed595cd097b6efbe14/.github/workflows/ovn-kubernetes.yml#L51-L55
https://github.com/ovn-org/ovn/blob/f3a14907fe2b1ecdcfddfbed595cd097b6efbe14/.ci/ovn-kubernetes/Dockerfile
https://github.com/ovn-org/ovn/actions/runs/6982766925/job/19017366226#step:11:668

8

Control plane scale tests with ovn-heater

● Scale testing OVN control plane challenges:

○ testing a real cluster (OpenStack/Kubernetes) is complex: lots of CMS-specific knowledge required; bottlenecks identified

in terms of CMS-specific components

○ not straightforward to find the right community/people to fix the bottleneck

○ harder to proactively implement a CI/CD pipeline from the control plane perspective: all tests can only be run whenever

core OVN changes are consumed by the CMS (often that’s months later).

● https://github.com/ovn-org/ovn-heater “Mega script to install/configure/run a simulated OVN cluster deployed with

ovn-fake-multinode.”

○ python & ansible based automation that relies on ovn-fake-multinode to set up and provision “fake” OVN nodes

○ contains its own collection of libraries to define workloads (uses python-ovs to configure the OVN databases)

○ integrated data collection (logs, perf traces, etc) and results interpretation (charts, latency stats, etc)

○ allows a faster test development pace for (new) OVN features

○ straightforward to use for CI/CD

https://github.com/ovn-org/ovn-heater

9

Control plane scale tests with ovn-heater

● Rather specific “real world” workload simulations

○ together with CMS (cloud management system) contributors we defined scenarios that are interesting to

simulate at scale:

■ ovn-kubernetes-like topologies: number of nodes, density of pods per node, number of services and

service endpoints, etc

■ OpenStack-like topologies: number of computes/controllers, projects, external/internal networks, density

of VMs, etc

○ came up with templated test scenarios implementing the above:

■ https://github.com/ovn-org/ovn-heater/blob/main/ovn-tester/cms/ovn_kubernetes/ovn_kubernetes.py

■ https://github.com/ovn-org/ovn-heater/blob/main/ovn-tester/cms/openstack/openstack.py

● Note: testing control plane scalability on public resources is not that easy; for reproducibility of results and full control of

the deployment, ovn-heater tests run on bare-metal lab infrastructure downstream.

● it turned out to be a very prolific exercise from a performance perspective:

○ lots of improvements in OVN components (ovn-controller, ovn-northd)

○ lots of improvements on the ovsdb-server side (more details in Ilya’s OVSCon’22 presentation)

More info about ovn-heater in this community meeting presentation from earlier this year.

https://github.com/ovn-org/ovn-heater/blob/main/ovn-tester/cms/ovn_kubernetes/ovn_kubernetes.py
https://github.com/ovn-org/ovn-heater/blob/main/ovn-tester/cms/openstack/openstack.py
https://www.openvswitch.org/support/ovscon2022/slides/ovsdb-perf-updates-22-ovn-heater.pdf
https://docs.google.com/presentation/d/1yf8lltZhA1YUr8VQ1ldxDiGoyZv0f3W42J0exS8XQsA/

10

Control plane scale tests with real CMS (OpenShift)

● What better way to scale test how a CMS would use OVN than to actually deploy that CMS and run tests against it?

● Together with dedicated performance and scale teams we test OpenShift downstream at scale:

○ Bring up large clusters: 120, 250, 500, 1000 nodes

○ Run real workloads on these clusters: https://github.com/cloud-bulldozer/kube-burner/tree/master/examples/workloads

○ Collect relevant OVN information (logs, databases) and relevant metrics for the tested workloads.

● Pros:

○ Full fledged OpenShift => no potential gap between simulation and real CMS behavior.

● Cons:

○ Harder to integrate upstream.

○ Requires even more CMS specific knowledge when debugging/interpreting results.

○ More complex to set up than other control plane test tools (ovn-heater).

○ Usually triggered on demand.

● Note:

○ There are ways of deploying OpenShift clusters on baremetal (in VMs), with custom ovn-kubernetes images => it’s possible to create

a CI pipeline to test real OpenShift at scale with vanilla upstream OVN code (WIP).

https://github.com/cloud-bulldozer/kube-burner/tree/master/examples/workloads
https://github.com/bn222/cluster-deployment-automation/

11

Data plane performance regression testing

● Periodic test runs with OVN-only cluster automation

● Various combinations of traffic patterns trying to replicate

common kubernetes/OpenStack scenarios

● Really focused on the dataplane performance (no control plane

tests):

○ hardware traffic generator -> a couple of OVN nodes

(geneve) -> hardware traffic generator

○ test for TCP/UDP throughput and latency

12

OVN CI: what, where, when?

Event Who Action Report

PATCH posted to dev mailing list.
([ovs-dev,v3] controller: Don't artificially …)

ovsrobot/pw-ci Apply patch to corresponding
branch, run checkpatch, push
series branch to ovsrobot ovn
fork

ovs-build email reply

commit pushed to ovsrobot/ovn fork ovsrobot/pw-ci GitHub actions triggered GitHub actions results

ovsrobot fetches results of the GH actions ovsrobot/pw-ci Parse GH actions result ovs-build email reply (link to
GH actions unit and system
test results and also
ovn-kubernetes test results)

maintainer applies patch to OVN GitHub GitHub actions triggered but
also CirrusCI actions
triggered (unit and system
tests on ARM)

GitHub actions results
CirrusCI results
Build badges (see bottom)

https://patchwork.ozlabs.org/project/ovn/patch/20231026113713.1718954-1-dceara@redhat.com/
https://github.com/ovsrobot/pw-ci
https://github.com/ovsrobot/ovn
https://github.com/ovsrobot/ovn
https://mail.openvswitch.org/pipermail/ovs-build/2023-October/034304.html
https://github.com/ovsrobot/pw-ci
https://github.com/ovsrobot/ovn/actions
https://github.com/ovsrobot/pw-ci
https://mail.openvswitch.org/pipermail/ovs-build/2023-October/034310.html
https://github.com/ovsrobot/ovn/actions/runs/6653569320
https://github.com/ovsrobot/ovn/actions/runs/6653569320
https://github.com/ovsrobot/ovn/actions/runs/6653569330
https://github.com/ovn-org/ovn/actions?query=branch%3Amain+event%3Apush
https://cirrus-ci.com/github/ovn-org/ovn/main

13

OVN CI: what, where, when?

Event Who Action Report

Schedule (weekly) GitHub Run system tests with ovn-fake-multinode. GitHub actions results

Schedule (weekly) GitHub Run unit and system tests (with OVS most recent stable
branch).

GitHub actions results

Schedule (weekly) GitHub Build custom ovn-kubernetes container images with latest
OVN main code.

GitHub actions results

Schedule (weekly) Downstream
automation

Trigger ovn-heater runs in Red Hat lab; matrix:
- 20, 120, 250, 500 nodes
- IPv4 & IPv6
- density-light/heavy/cluster-density/network-policy tests

Potentially through
emails, bug reports,
upstream patches (no
automated mechanism)

Schedule (weekly) Downstream
automation

Trigger dataplane tests in Red Hat lab to verify for
potential performance (throughput/latency) regressions.

Potentially through
emails, bug reports,
upstream patches (no
automated mechanism)

https://github.com/ovn-org/ovn/actions/workflows/ovn-fake-multinode-tests.yml?query=event%3Aschedule
https://github.com/ovn-org/ovn/actions/workflows/test.yml?query=event%3Aschedule
https://github.com/ovn-org/ovn/actions/workflows/ovn-kubernetes.yml?query=event%3Aschedule

14

How do we improve all this? - stability

● Improve in-tree CI:

○ Detect unstable in-tree unit/system tests: avoid hiding failures via recheck

○ Fix unstable in-tree unit/system tests: 100+ commits to fix tests in the last 12 months

○ Pin versions of non-OVN components to avoid noise in testing: "ci: Pin Python, Fedora and Ubuntu runner versions." and "Allow to

use different container images per branch."

○ Improve complex and slow tests (e.g., use fmt-pkt more often now that it’s becoming fast)

● Use stable ovn-kubernetes releases(*) in ovn-org/ovn CI (avoid noise from bleeding-edge code in ovn-kubernetes)

(*) ovn-kubernetes has no stable releases at the moment

https://github.com/ovn-org/ovn/commit/0224e45a6a10a0720b8a189d98eb0ab59289cb60
https://github.com/ovn-org/ovn/commit/278e0d3f9acb
https://patchwork.ozlabs.org/project/ovn/list/?series=383384&state=*
https://patchwork.ozlabs.org/project/ovn/list/?series=383384&state=*
https://patchwork.ozlabs.org/project/ovn/list/?series=382220
https://patchwork.ozlabs.org/project/ovn/list/?series=382747

15

How do we improve all this? - coverage

● Expand control plane scale testing (ovn-heater):

○ Add support for running OVN-IC clusters with ovn-heater (initial work is merged, last part is under review)

○ Add OVN-IC tests to downstream test matrix

○ Add more OpenStack scenarios

○ Automate result reporting downstream -> upstream

● Expand the data plane testing infrastructure:

○ Add more traffic patterns

○ Automate result reporting downstream -> upstream

● Complete downstream CI pipeline to deploy OpenShift/kubernetes at scale on baremetal with vanilla upstream OVN:

○ Run control and data plane CMS specific tests

○ Automate result reporting downstream -> upstream

https://github.com/ovn-org/ovn-heater/pull/169
https://github.com/ovn-org/ovn-heater/pull/186

16

Questions, suggestions, feedback?

Thank you!

17

